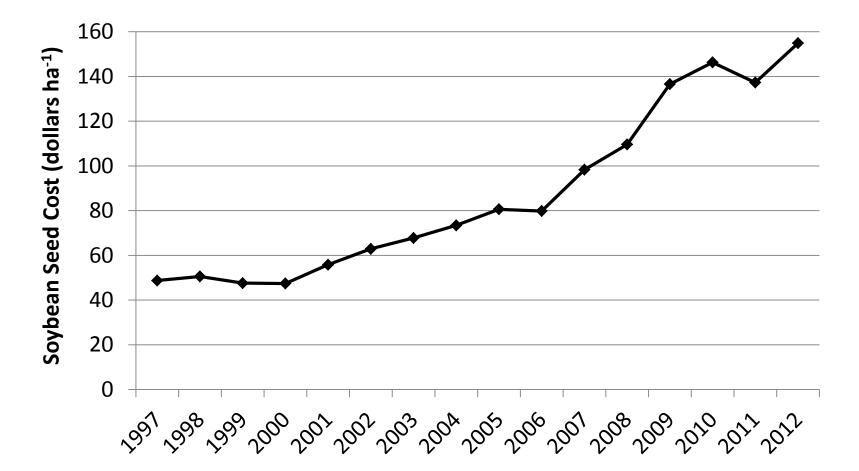
Increased Soybean Seeding Rates vs. Preemergence Herbicide Use


Ryan DeWerff, Dr. Vince Davis, Dr. Shawn Conley

Background

• Soybean seed cost has dramatically increased since the mid 1990's

Background

- Economic realities and improved genetics are driving a reduction in soybean seeding rates
- Current recommendations are to establish a stand of 247,000 plants ha⁻¹
- Lower seeding rates can slow canopy development
- Crop canopy closure aids in weed suppression
- Preemergence (PRE) residual herbicides may be more necessary for weed control in low seeding rate soybean systems

WCWS Wisconsin Crop Weed Science

Background

- PRE residual herbicides:
 - Reduce amount of weeds exposed to postemergence (POST) applications
 - Allow for greater flexibility in POST application timing
 - Provide additional effective mode of action for resistance management
 - Protect crop from early-season weed competition
 - Enable quicker canopy closure??

Objective

- Establish the effectiveness of weed suppression by increased seeding rates in relation to PRE residual herbicide control in the context of herbicide resistance management
- Do higher seeding rates reduce number of weeds exposed to POST herbicide?

Site Description

- Two year study near Arlington, WI (2012 & 2013)
- Field Preparation
 - Fall chisel plowed
 - Spring field cultivated
- Planted mid-May in 38 cm wide rows
- Predominant weeds
 - Setaria faberi
 - Chenopodium album
 - Ambrosia artemisiifolia
 - Amaranthus retroflexus

- 2 x 2 x 5 factorial in RCB
 - [2] with or without PRE herbicide
 - [2] POST herbicide programs

Herbicide Treatments

PRE residual	S-metolachlor+	
	fomesafen	
Conventional program	imazamox fb	
	fluazifop	
Glyphosate program	glyphosate+	
	imazamox	

• [5] seeding rates

Seeding Rate Structure			
1000 seeds hectare ⁻¹			
High	470 GR ^a		
Moderate	296 GR		
High blend	296 GR		
	173 C		
Low blend	148 GR		
	86 C		
Low	148 GR		
^a GR = glyphosate-resista	nt seed		
^b C = conventional seed			

Data Collection

- Weed counts
 - before POST applications
 - before soybean harvest
- Soybean stand counts
- Weekly soybean growth staging
- Weekly canopy closure estimates
 - digital image capture method adapted from (Purcel, 2000. Crop Sci.)
- Soybean yield adjusted to 13% moisture

Data Analysis

- Data were subjected to ANOVA using the Proc Mixed procedure in SAS
- Means were separated using Fisher's Protected LSD test at P≤0.05
- Weed density data were log transformed
 - Data presented were back transformed
- Linear regression using the Proc Reg procedure in SAS

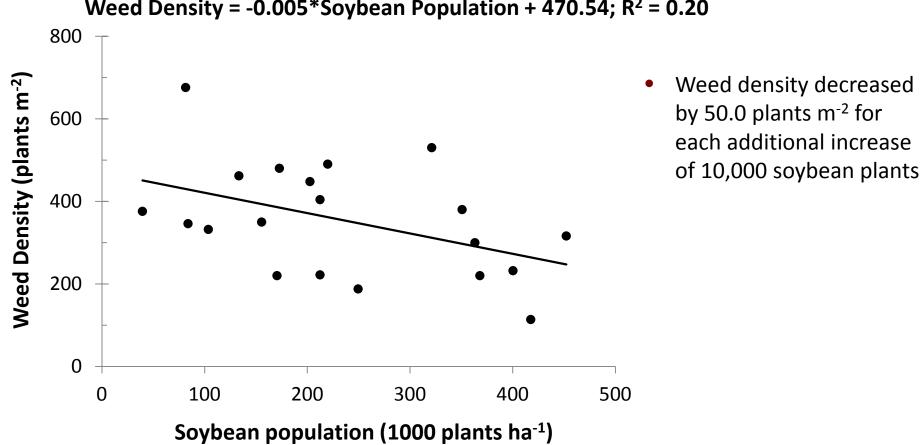
- Canopy closure estimation
 - Images were analyzed with SigmaScan Pro[®] to determine percent light interception
 - Cumulative intercepted photosynthetically active radiation (CIPAR) values were calculated
- CIPAR = (average solar radiation (MJ m⁻²)*0.0864*0.5* % LI) summed over a given period of time
 - V1 R1 (critical period of weed control)
 - Glyphosate treatments only

Edwards et al., 2005. Crop Sci.

Weed Density: Seeding Rate

• An increase in soybean population did not influence early or late-season weed growth in most scenarios

Model: $y = \beta_1^*$ soybean population + β_0						
		Model significance (Pr>F)				
Year	Herbicide program	Total Density at POST timing	Total Density at harvest ^a			
2012	PRE	0.9036	0.5132			
	NO PRE	0.0468	0.6187			
2013	PRE	0.1071	0.0422 ^b			
	NO PRE	0.9714	0.2086			

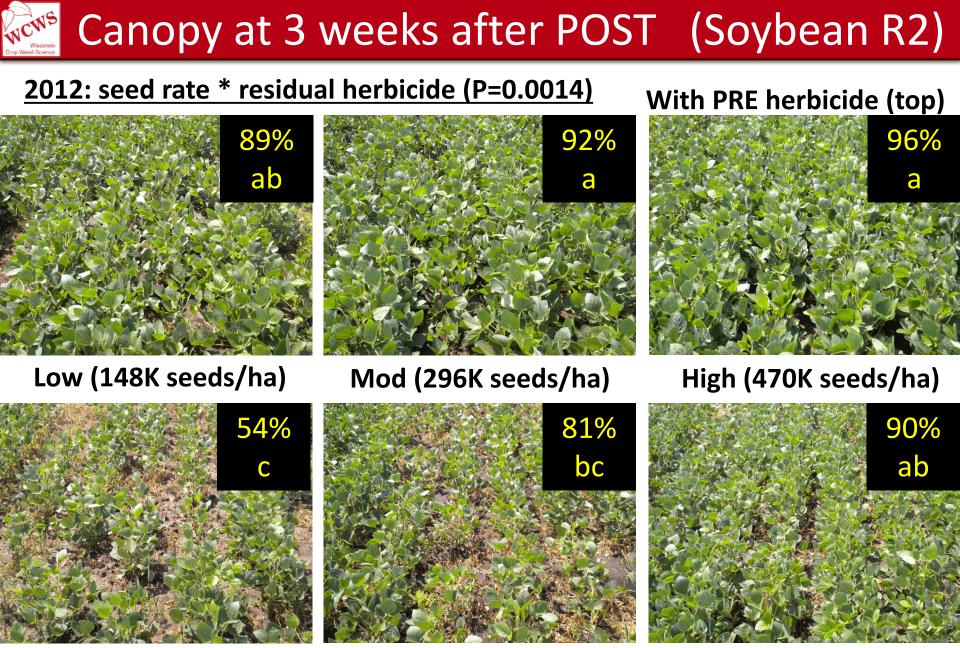

^aData were log transformed ^bDid not meet assumptions

• **Exception:** 2012 in plots without a residual herbicide at POST timing

Exception: 2012

Weed Density = -0.005*Soybean Population + 470.54; R² = 0.20

Weed Density: Residual Herbicide


Weed density at POST timing averaged across years

	Density			
herbicide program	broadleaves ^a	grasses ^b	total	
		plants m ⁻²		
PRE	6	7	13	
No PRE	98	77	188	
Pr > F	<0.0001	<0.0001	<0.0001	

^aBroadleaf species included Chenopodium album, Ambrosia artemisiifolia, and Amaranthus retroflexus

^bGrass species included Setaria faberi, Eriochloa villosa, and Digitaria sanguinallis

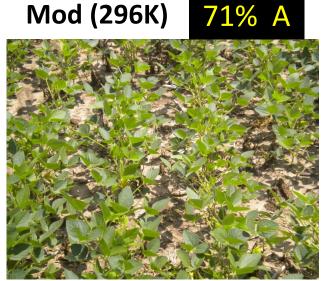
• Reduced total number of weeds exposed to POST application by 93%

Without PRE herbicide (bottom)

NCWS Canopy at 3 weeks after POST (Soybean R2)

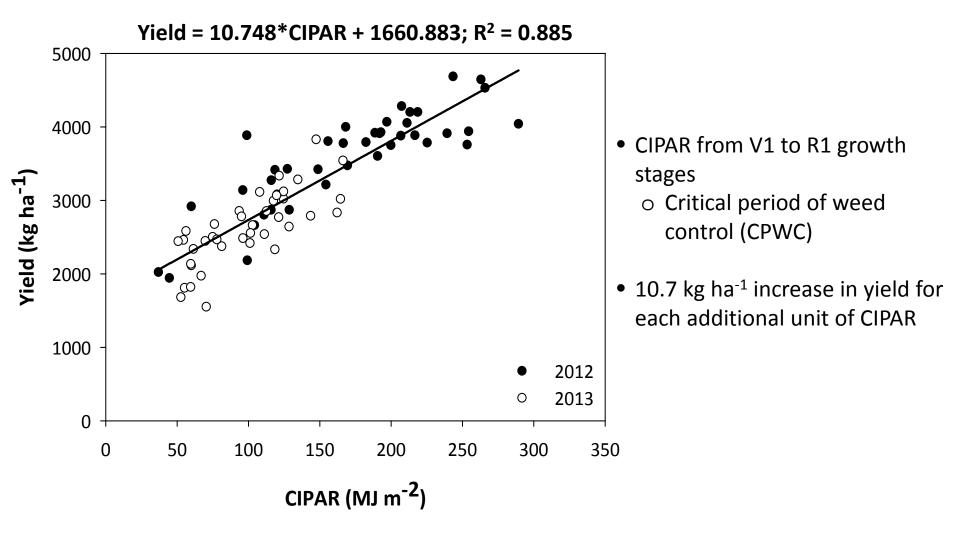
2013: seed rate * residual herbicide (P=0.6713)

With PRE herbicide (top)

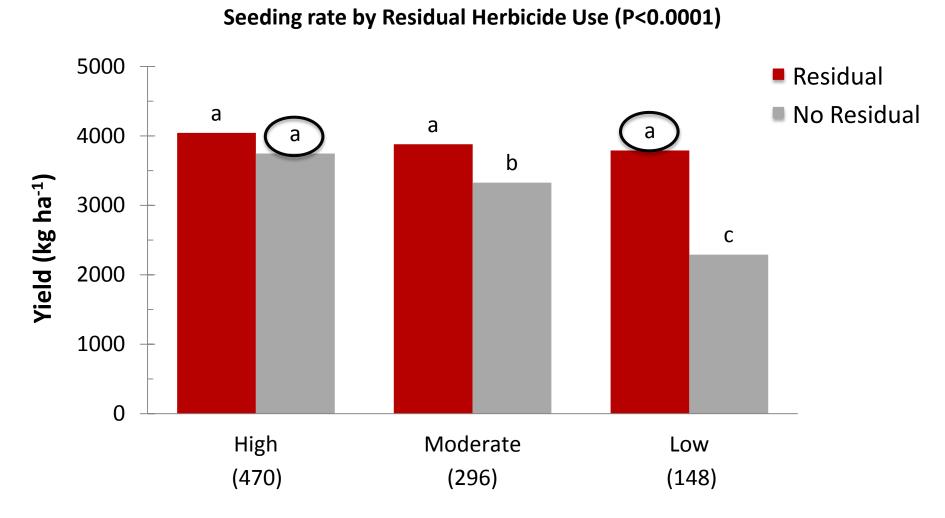


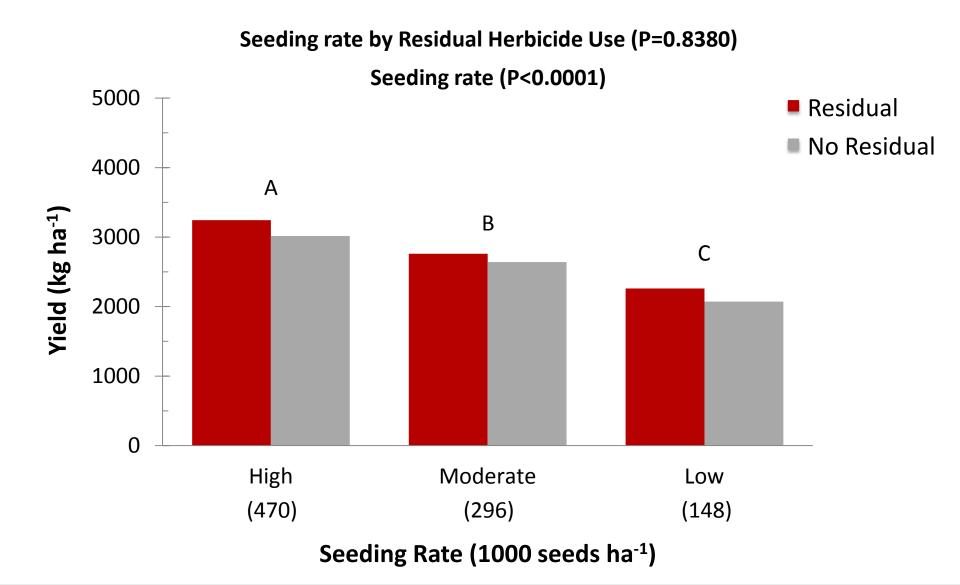
Low (148K)

seed rate (P=0.0001)


High (470K)

Without PRE herbicide (bottom)





Seeding Rate (1000 seeds ha⁻¹)

Implications: Yield

- Soybean canopy closure is important to maximize yield
 - Higher seeding rates = quicker canopy closure (2013)
 - Early-season weed competition can delay canopy closure later in the season (2012)
- Residual herbicides can maximize canopy development by limiting earlyseason weed competition
 - Especially important at low seeding rates
- Lower seeding rates can increase risk of yield loss from weed competition if resources are limited (2012 drought)
 - A high seeding rate was necessary to maximize yield when soybean was subjected to high early season-weed competition (i.e. no residual herbicide)
 - Residual herbicides can reduce risk

Implications: Resistance Management

- Increased seeding rates may NOT be an effective method for herbicide resistance management
 - Did not reduce number of weeds exposed to POST applications
 - Did not reduce end of season weed densities
 - **Exception:** higher soybean populations decreased weed density prior to POST application in 2012
- Residual herbicides
 - Limited the number of weeds exposed to the POST herbicides by 93%
 - Reduced end of season weed densities

Acknowledgements

Partially funded by:

A special thanks to Tim Trower, John Gaska, Adam Roth, and the graduate and undergraduate research assistants for their technical assistance

Thank You!

Questions?