N₂O emissions as influenced by N and weeds before and after POST glyphosate application

Rebecca R. Bailey, Vince M. Davis University of Wisconsin-Madison

Why this research?

USDA-NIFA Corn-Climate CAP

• Investigates C, N, water footprints in corn-based cropping

Nitrous oxide

"N₂O is now the most significant ozone-depleting substance emission and the third most important greenhouse gas released into the atmosphere." –UNEP, November 2013

- GWP: $1 \text{ kg N}_2\text{O} = 298 \text{ kg CO}_2$
- 5% of total emissions in US from N₂O
- 70% of N₂O from agricultural land management
- 8% total emissions from agriculture (100 million passenger vehicles)

N and Weeds

• More N = more N₂O emissions IPCC estimates 1% of N \rightarrow N₂O 200 kg N ha⁻¹ \rightarrow 2 kg N₂O-N ha⁻¹

• More soil moisture = more N_2O emissions Denitrification

$$NO_3^- \rightarrow NO_2^- \rightarrow NO(g) \rightarrow N_2O(g) \rightarrow N_2(g)$$

- Weeds compete for soil N and water
- Plant residue can encourage N cycling and increase soil moisture

How does that affect N₂O?

Research Questions

- Do weeds reduce emissions while growing?
- Do dead weed residues increase emissions?
- Are cumulative emissions the same for a given rate of N independent of weed density?
- Should weed management be a consideration to generate models describing N₂O emissions from corn production?

2x2 factorial CRD

B→ Biomass collected ~wk 4 (duplicate chamber)

USDA GRACEnet

30 DAP/3 DAT

33 DAP/6 DAT

Field study

Gas sampling

- Samples collected 2x/wk for 8 wks
- Four samples per hour—0, 20, 40, 60 min

• Gas chromatography to determine N₂O concentration

Treatment of Data

1. Linear regression of [N₂O] to determine flux

 μ g N_2 O-N m^{-2} h^{-1}

2. Check for outliers within each sampling day

Model → N_2O = weed N weed*N

3. Linear interpolation between sampling days

Jarecki et al., 2009

GH1, chamber in +W+N

3. Linear interpolation between sampling days

Jarecki et al., 2009

GH1, chamber in +W+N

4. Numerical integration using Simpson's rule

Jarecki et al., 2009

GH1, chamber in +W+N

4. Numerical integration using Simpson's rule

Results

Model → N_2O = weed N weed*N

	P values		
Trial	weed	N	weed*N
Greenhouse 1	0.0021	<.0001	0.1166
Greenhouse 2	0.2186	<.0001	0.7646
Field	0.155	<.0001	0.1578

Reference	
$mg N_2O-N m^{-2}$	35.1
$kg N_2^-O-N ha^{-1}$	0.351
10^{-1} lb N_{2}^{-0} -N ac ⁻¹	0.312

Total N₂O Emissions by N

Total N₂O Emissions by Weed

GH 1: N₂O Emissions by Weed Before/After POST

■ Before Termination ■ After Termination

GH 2: N₂O Emissions by Weed Before/After POST

■ Before Termination
■ After Termination

Field: N₂O Emissions by Weed Before/After POST

Conclusions

- No weed*N interaction in 2 GH and 1 field trial
- N fertilizer consistently increased N₂O emissions in all studies
- Effect of weed presence was variable:
 - 1. Weeds increased total N_2O emissions (p=0.0021) and emissions after termination (p=0.0001) in GH 1
 - 2. Weeds had no significant influence in GH 2
 - 3. Weeds reduced emissions in field before termination (p=0.0796), but no overall effect

Questions?

Thanks to the graduate and undergraduate students and research support staff who helped with this project.

Funding Acknowledgements

This research is supported by the United Soybean Board, Award No. 1161, and is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190 "Cropping Systems Coordinated Agricultural Project (CAP): Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems"

U.S. Emissions

Total Emissions in 2011 = 6,702 Million Metric Tons of CO_2 equivalent

Total U.S. Emissions

Total U.S. Emissions

http://www.epa.gov/climatechange/ghgemi ssions/sources/agriculture.html

N₂O Emissions

http://www.epa.gov/climatechange/ghgemissions/gases/n2o.html