



Influence of management and atrazine use on late-season weed escapes in Wisconsin corn and soybean fields

Ross A. Recker and Vince M. Davis

**Graduate Research Assistant and Assistant Professor** 

**Department of Agronomy** 

**University of Wisconsin-Madison** 



#### Outline

- Introduction
  - Atrazine Prohibition Areas
- Objective
- Materials and Methods
  - On-line and in-field survey methods
  - Data summarization
- Results
  - Relative abundance, unadjusted frequency, density in occurrence fields
- Conclusion

# INTRODUCTION: Atrazine Prohibition Areas in Wisconsin

- Atrazine Prohibition areas (PAs) are established where atrazine total chlorinated residues are found in concentrations greater than 3 parts per billion in drinking water wells
- First six PAs established in 1991
- Currently, over 100 PAs



http://datcp.wi.gov/uploads/Environment/pdf/ WeedMgtAtrazinePAs.pdf

## What herbicides do growers use as alternatives to atrazine in corn?

| Herbicide a.i. | Percentage of Respondents 1,2 |  |  |
|----------------|-------------------------------|--|--|
| Glyphosate     | 90                            |  |  |
| s-Metolachlor  | 22                            |  |  |
| Mesotrione     | 21                            |  |  |
| Acetochlor     | 19                            |  |  |
| Dicamba        | 10                            |  |  |
| Clopyralid     | 10                            |  |  |
| Flumetsulam    | 10                            |  |  |
| 2, 4-D         | 6                             |  |  |
| Tembotrione    | 4                             |  |  |
| Diflufenzopyr  | 4                             |  |  |
| Atrazine       | 4                             |  |  |
| Simazine       | 2                             |  |  |

<sup>&</sup>lt;sup>1</sup> Each grower was asked to respond with the top three herbicides in the past three years as alternatives to atrazine

**Courtesy: (WDATCP 2011)** 

<sup>&</sup>lt;sup>2</sup> 102 growers responded

# Objective of late-season weed escape survey

Compare weed community composition in different types of management, including past atrazine use

#### Materials and methods

 On-line survey distributed to Wisconsin producers in June 2012 and 2013

#### Generated

- Field history information
- Grower's perspective of problematic weeds
- Sample locations and permission for in-field survey
- In-field survey in corn and soybean fields during late-July through mid-September followed the online survey in 2012 and 2013

#### **Data Collection**

#### In-Field Survey Sampling Procedure



- 20 quadrats (m²), spaced approximately 20 m apart
- Counted number of each weed species in each quadrat

#### **Data Summarization**

- Mature weeds expected to produce seed were categorized as an "expected escape"
- Weed count data were summarized for:

$$\frac{\text{Unadjusted}}{\text{Frequency}} = \frac{\text{number of fields where species occurred}}{\text{number of fields sampled}} \times 100$$

$$\frac{\text{Uniformity}}{\text{All Fields}} = \frac{\text{number of quadrats where species occurred}}{20 \text{ x number of fields sampled}} \times 100$$

$$\frac{\text{Density}}{\text{All Fields}} = \frac{\text{Number of plants m-2 averaged across all fields}}{\text{Number of plants m-2 averaged across all fields}}$$

And....

#### Relative abundance

Relative frequency for a species (RF) = 
$$\frac{\text{frequency of a species}}{\text{sum of frequency values for all species}} \times 100$$
Relative uniformity for a species (RU) = 
$$\frac{\text{uniformity of a species}}{\text{sum of uniformity values for all species}} \times 100$$
Relative density for a species (RD) = 
$$\frac{\text{density of a species}}{\text{sum of density values for all species}} \times 100$$

#### Relative abundance (RA) for a species:

$$RA = RF + RU + RD$$

Essentially, an index allows comparisons of the overall abundance between one species versus another.

### Density (occurrence fields)

Density (all fields): Used for relative abundance calculations

- Density (occurrence fields): Used for comparisons between fields with different types of management
  - Number of plants m<sup>-2</sup> averaged across fields where the weed species was present

#### Materials and methods

- Weed count data were summarized for:
  - Frequency, uniformity, density, and relative abundance
- Fields surveyed were grouped separately by
  - Crop (corn or soybean)
  - Tillage (full, reduced, or no-till)
    - Full: < 15% residue at planting</li>
    - Reduced: 15% to 26% residue at planting
    - No-till: > 50% residue at planting
  - Region (based on National Agricultural Statistics Service reporting districts)
  - Past atrazine use: Atrazine has been applied in the past
    - 0 1 years (Recent)
    - → 2 9 years (Transition)
      - ≥ 10 years (Discontinued)

#### Outline

- Introduction
  - Atrazine Prohibition Areas
  - Glyphosate resistance in Wisconsin
- Objective
- Materials and Methods
  - On-line and in-field survey methods
  - Data summarization
- Results
  - Relative abundance, unadjusted frequency, density in occurrence fields
- Conclusion

#### Results

343 fields sampled total

|                 | Past Atrazine Use |                   |              |
|-----------------|-------------------|-------------------|--------------|
|                 | Recent            | <b>Transition</b> | Discontinued |
| Fields Surveyed | 160               | 71                | 109          |

- 89 different expected weed species escapes documented
  - 64 broadleaf species
  - 25 grass species or plants resembling grass species
- Top 5 most problematic weeds & percentage of fields as indicated by on-line survey respondents
  - 1. Common lambsquarters (72%)
  - 2. Foxtails (46%)
  - 3. Velvetleaf (42%)

- 4. Giant ragweed (39%)
- 5. Amaranthus spp. (29%)

#### Relative Abundance

|                                          | Relat     | Relative Abundance  |                    |                     | Rank               |  |
|------------------------------------------|-----------|---------------------|--------------------|---------------------|--------------------|--|
| Common Name                              | Statewide | Recent <sup>1</sup> | Disc. <sup>2</sup> | Recent <sup>1</sup> | Disc. <sup>2</sup> |  |
| 1. Dandelion                             | 39        | 31                  | 32                 | 2                   | 1                  |  |
| <ol> <li>Common lambsquarters</li> </ol> | 30        | 20                  | 32                 | 5                   | 2                  |  |
| 3. Giant foxtail                         | 21        | 35                  | 23                 | 1                   | 3                  |  |
| 4. Yellow nutsedge                       | 19        | 22                  | 10                 | 3                   | 10                 |  |
| 5. Yellow foxtail                        | 14        | 18                  | 14                 | 6                   | 7                  |  |
| 6. Fall panicum                          | 14        | 21                  | 14                 | 4                   | 6                  |  |
| 7. Large crabgrass                       | 12        | 3                   | 16                 | <b>26</b>           | 5                  |  |
| 8. Velvetleaf                            | 11        | 8                   | 17                 | 12                  | 4                  |  |
| 9. Green foxtail                         | 11        | 16                  | 8                  | 7                   | 13                 |  |
| 10. Quackgrass                           | 9         | 8                   | 7                  | 11                  | 14                 |  |

<sup>&</sup>lt;sup>1</sup> Recent refers to the 160 fields where atrazine had been applied in the current or previous growing season

<sup>&</sup>lt;sup>2</sup> Discontinued refers to the 109 fields where atrazine had not been applied for ≥ 10 years



## Unadjusted Frequency

|                      | Unadjusted          |                    |                              |
|----------------------|---------------------|--------------------|------------------------------|
| Common Name          | Recent <sup>1</sup> | Disc. <sup>2</sup> | Chi-square test <sup>3</sup> |
|                      | %                   | P value            |                              |
| All Broadleaves      | 60.6                | 73.4               | 0.0302                       |
| All Grasses          | 53.8                | 62.4               | 0.1599                       |
| Dandelion            | 22.5                | 31.2               | 0.1107                       |
| Common lambsquarters | 18.8                | 33.0               | 0.0075                       |
| Velvetleaf           | 9.4                 | 22.9               | 0.0021                       |
| Giant ragweed        | 7.5                 | 8.3                | 0.8203                       |
| Amaranthus Spp.      | 7.5                 | 14.7               | 0.0584                       |

<sup>&</sup>lt;sup>1</sup> Recent refers to the 160 fields where atrazine had been applied in the current or previous growing season

<sup>&</sup>lt;sup>2</sup> Discontinued refers to the 109 fields where atrazine had not been applied for ≥ 10 years

<sup>&</sup>lt;sup>3</sup> Chi-square may not be a valid test when expected probabilities are extremely low. In such cases, a P value from Fisher's exact test is also shown to quantify differences using exact probabilities.

## Density (Occurrence Fields)

|                      | Density             |                    |                             |        |
|----------------------|---------------------|--------------------|-----------------------------|--------|
| Common Name          | Recent <sup>1</sup> | Disc. <sup>2</sup> | Transformation <sup>3</sup> | t-test |
|                      | Plants              | P-value            |                             |        |
| All Broadleaves      | 0.19                | 0.40               | In(x)                       | 0.0001 |
| All Grasses          | 0.48                | 0.39               | ln(x)                       | 0.3934 |
| Dandelion            | 0.11                | 0.12               | 1/√(x)                      | 0.5439 |
| Common lambsquarters | 0.09                | 0.15               | 1/√(x)                      | 0.0438 |
| Velvetleaf           | 0.07                | 0.12               | 1/√(x)                      | 0.0571 |
| Giant ragweed        | 0.12                | 0.28               | ln(x)                       | 0.0210 |
| Amaranthus Spp.      | 0.08                | 0.17               | 1/√(x)                      | 0.0724 |

<sup>&</sup>lt;sup>1</sup> Recent refers to the 160 fields where atrazine had been applied in the current or previous growing season

<sup>&</sup>lt;sup>2</sup> Discontinued refers to the 109 fields where atrazine had not been applied for ≥ 10 years

<sup>&</sup>lt;sup>3</sup> Type of transformation as suggested by the BoxCox method

## Summary

#### Trend in relative abundance (RA)

- The RA of grasses is higher in fields where atrazine has been recently used compared to not being applied for 10 years.
- The RA of broadleaves is higher in fields where atrazine use has been discontinued compared to recent use.

#### Frequency

 Total broadleaf escapes are more frequent in fields where atrazine use has been discontinued compared to recent use; primarily driven by more common lambsquarters, velvetleaf, and Amaranthus spp. escapes.

#### Density

 Total broadleaf escapes are more dense, especially common lambsquarters, velvetleaf, Amaranthus spp., and giant ragweed, in fields where atrazine use had been discontinued compared to recently used.

#### CONCLUSION

Weed communities are comprised of more frequent, dense, and in some cases abundant broadleaf weed species in fields where atrazine use has been discontinued compared to recently used.



#### THANK YOU



- All the Growers, Crop Consultants and Farm Managers who participated in the survey
- Drs. Dave Stoltenberg, Paul Mitchell, and Joe Lauer
- Ryan Dewerff, Tommy Butts, Rebecca Bailey, Micheal Halle, Sara Maly, John Buol, Joe Zimbric, and Andrew Madden

Funded by: Wisconsin Corn Promotion Board



